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Natural convection in a cubical cavity heated from below with perfectly conducting
sidewalls is investigated numerically. A parameter continuation procedure based on a
Galerkin spectral method was applied to obtain the bifurcation diagrams for steady
flow solutions over the region of Rayleigh numbers Ra � 1.5 × 105 at Prandtl numbers
Pr = 0.71 and 130. In both cases, the bifurcation diagrams were more complex than
those previously reported for adiabatic sidewalls. Four and nine different convective
solutions (without taking into account the solutions obtained by symmetry) that
were stable over certain ranges of Ra were respectively identified at Pr = 0.71 and
130. The dependence of the bifurcation diagrams and of the topology of the flow
patterns on the Prandtl number were also stronger in the case of conducting sidewalls.
Most of the flow patterns investigated evolved to double toroid-like topologies with
increasing Rayleigh number. This is especially noticeable at Pr = 130, where all flow
patterns adopted double-toroid shapes that were superimposed on the characteristic
flow patterns observed at values of Ra slightly above the respective bifurcation points
where they originated. At sufficiently high Ra the double-toroid pattern configuration
prevailed. This phenomenon, which has not been previously observed in the case of
adiabatic lateral walls, is related to the thermal activity of the sidewalls, which locally
extract/supply relatively large amounts of heat from/to the fluid. These predictions
are consistent with experimental flow transitions and topologies reported in the
literature. In addition, a complete bifurcation study in the two-dimensional (Ra ,
Pr)-plane was carried out for the flow pattern with an initial configuration of four
connected half-rolls which was stable at both Pr = 0.71 and 130. Since the surface of
Nu over the (Ra , Pr)-plane presented several folds and cusps, different regions were
identified as a function of the number of particular realizations of this flow pattern,
varying between zero and five. Three different regions of stability were identified for
this particular flow pattern in the (Ra , Pr)-plane within the range of parameters
investigated, i.e. Ra � 1.5 × 105 and 0.71 � Pr � 130.

1. Introduction
Rayleigh–Bénard convection in confined enclosures has been extensively studied

(Yang 1988; Koschmieder 1993; Getling 1998; Bodenschatz, Pesch & Ahlers
2000) because of its practical applications and theoretical relevance. Since natural
convection constitutes a fluid flow problem with well-established base solutions
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for the velocity and temperature fields, for certain simple geometries and thermal
boundary conditions, it provides an appropriate model for the study of hydrodynamic
instabilities and subsequent flow bifurcations preceding the onset of turbulence. The
first bifurcation, corresponding to the instability of the motionless conductive state
and the onset of convection, occurs when the Rayleigh number reaches a critical value
Rac. In the case of confined domains the critical Rayleigh number depends not only on
the geometry but also on the thermal boundary conditions. Several numerical linear
stability analyses carried out previously have determined the variation of Rac with
the width/height and length/height aspect ratios for parallelepipedical cavities with
either perfectly conducting (Davis 1967; Catton 1972; Mizushima & Nakamura 2003)
or adiabatic lateral walls (Catton 1970; Gelfgat 1999). These studies also identified
the flow patterns developed at Ra slightly above the critical value. Nevertheless,
reliable information about the flow transitions that occur as the Rayleigh number is
further increased is still missing in most cases since numerical parameter continuation
and bifurcation methods applied to the nonlinear governing equations have not been
carried out.

Flows in cubical cavities are particularly interesting because the intrinsic symmetry
of this geometry yields steady-state solutions with more symmetries than those found
in parallelepipedical enclosures (Leong, Hollands & Brunger 1999; Pallarès et al. 2001;
Pepper & Hollands 2002; Mizushima & Nakamura 2003). Also, given a solution in a
cubical cavity, several other solutions can be obtained by considering the geometrical
symmetries. The bifurcation analyses reported by Puigjaner et al. (2004, 2006) reveal
that the bifurcation diagrams of steady flow patterns that develop inside a cubical
cavity with adiabatic lateral walls and filled either with air (Pr = 0.71) or silicone oil
(Pr = 130) are rather complex. Five and six flow patterns (enumerating only those
that are not related by symmetries of the problem) were respectively identified to
be stable over some ranges of the Rayleigh number within the region Ra � 1.5 × 105

at Pr = 0.71 and 130. Several steady flow patterns and several flow transitions were
experimentally observed by Pallarès et al. (2001) in a cubical cavity filled with silicone
oil (Pr = 130) with both adiabatic and perfectly conducting lateral walls. Most of the
experimental flow transitions between different steady flow patterns observed by these
authors for Ra � 8 × 104 and adiabatic lateral walls were explained by the bifurcation
diagram reported in Puigjaner et al. (2006).

The difficulty in building an experimental set-up with either perfectly adiabatic
or perfectly conducting lateral walls may explain some of the discrepancies between
computed and measured results for convection in cavities (Leong, Hollands & Brunger
1998). One consequence of the lateral walls being conductive is that part of the heat
transferred from the bottom to the top wall flows through the lateral walls. The effect
of sidewall conductance on the heat transport characteristics of confined turbulent
flows was theoretically investigated by Ahlers (2000) and Roche et al. (2001). Both
proposed definitions of the Nusselt number that take into account the rate of total
heat transfer through the lateral walls. On the other hand, the effects of a sidewall with
finite thermal conductivity on flows confined in a cylindrical cavity were numerically
studied by Verzicco (2002). This author expressed the thermal boundary conditions
as a function of the heat conductivity of the sidewall, which varied from adiabatic
to highly conducting. Verzicco (2002) showed that the heat conductivity of the
sidewall not only affected the Nusselt number but also the topology of the mean flow
structures.

The aim of the present study is to determine the bifurcation diagrams of steady
convective flow patterns in a cubical cavity with perfectly conducting lateral walls at
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both Pr = 0.71 and 130 for Ra � 1.5 × 105. The stability and domains of existence of
the steady solutions that arise at bifurcation points are calculated. Stable and unstable
steady solution branches are tracked using an arclength continuation algorithm
applied to the nonlinear steady governing equations obtained by means of a Galerkin
method. Both steady and Hopf bifurcation points are determined along the different
bifurcating branches. Initially unstable steady flow patterns are also tracked since they
can become stable as a consequence of subsequent bifurcations (see Puigjaner et al.
2004, 2006). The study of the evolution of the spatial configuration of flow patterns
as Ra is increased focuses on those flow patterns that are stable over certain ranges
within the studied domain. Since the evolutions of flow patterns may be quite different
from those reported by Puigjaner et al. (2004, 2006) for adiabatic lateral walls, the
effect of thermal boundary conditions on the flow and heat transport characteristics
is analysed for different flow patterns. On the other hand, Puigjaner et al. (2006)
showed that the dependence of the flow patterns and heat transport characteristics
on the Prandtl number was significant but smooth when adiabatic lateral walls were
assumed. To illustrate the complex dependence of the current bifurcation diagrams
on Pr a comprehensive bifurcation study in the two-dimensional (Ra ,Pr) parameter
plane is presented for the stable flow pattern of four connected half-rolls. Moreover,
predicted flow patterns and transitions are compared with the experimental results
reported by Leong et al. (1999) at Pr =0.71 and Pallarès et al. (2001) at Pr = 130.

2. Governing equations and numerical method
2.1. Governing equations

The problem of an incompressible flow of a Newtonian fluid confined in a cubical
cavity with six rigid walls is investigated. The top and the bottom horizontal walls
are kept at the constant temperatures Tc and Th (Tc < Th), respectively, and the lateral
walls are assumed to be perfectly conducting, i.e. a linear vertical temperature profile
is assumed. The non-dimensional domain scaled by the length of the cubical cavity,
L, is represented by D = [−1/2, 1/2] × [−1/2, 1/2] × [−1/2, 1/2].

The problem is governed by mass conservation, Navier–Stokes and energy
conservation equations. The non-dimensional equations depend on two dimensionless
parameters, the Rayleigh number, Ra , and the Prandtl number, Pr , which control
the physics and, hence, the solutions of the problem. These parameters are defined
as Ra = β(�T )gL3/αν and Pr = ν/α, where g is the acceleration due to gravity, β

is the coefficient of thermal expansion, ν is the kinematic viscosity, α is the thermal
diffusivity and �T = Th − Tc. Assuming the Boussinesq approximation, i.e. all fluid
properties are constant except for a linear variation of density (ρ) with temperature
in the buoyancy term of the Navier–Stokes equations, the governing dimensionless
nonlinear equations for the velocity V = (u, v, w), the temperature departure from
the motionless conductive state, θ = [T − (Th + Tc)/2]/�T − z, and pressure, p, are

Pr−1

(
∂V
∂t

+ Ra1/2(V · ∇)V
)

− ∇2V − Ra1/2θ ez + ∇ p = 0, (2.1a)

∂θ

∂t
+ Ra1/2(V · ∇)θ − ∇2θ − Ra1/2w = 0, (2.1b)

∇ · V = 0, (2.1c)

subject to boundary conditions

u = v = w = θ = 0 along |x| = 1/2, |y| = 1/2, |z| = 1/2. (2.1d)
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The dimensionless equations (2.1a–d ) are obtained by taking q0 = [β(�θ)gLα/ν]1/2,
�θ , L2/α and ρνq0/L as characteristic scales for velocity, temperature, time and
pressure, respectively. In (2.1a) ez denotes the unit vector in the z-direction.

2.2. Symmetry properties

The current study covers both symmetric and non-symmetric solutions. Nevertheless,
the underlying symmetries of the problem, described in this section, have been used
to reduce the computational effort and to understand the spatial configuration of
flow patterns that arise at subsequent bifurcations as Ra is increased. The consistency
of the symmetry properties of those flow patterns that set in at symmetry-breaking
bifurcations has also been checked.

The domain D and equations (2.1a–d ) are respectively invariant and equivariant
under the reflections Sx , Sy , Sz and Sd+

about the planes x = 0, y = 0, z = 0 and
x = y, respectively. The actions of these symmetries on solutions of (2.1a–d ) are

Sx : (x, y, z) → (−x, y, z) Sy : (x, y, z) → (x, −y, z)
(u, v, w, θ) → (−u, v, w, θ), (u, v, w, θ) → (u, −v, w, θ)

}
(2.2a, b)

Sz : (x, y, z) → (x, y, −z) Sd+
: (x, y, z) → (y, x, z)

(u, v, w, θ) → (u, v, −w, −θ), (u, v, w, θ) → (v, u, w, θ)

}
(2.2c, d)

The above elements generate the symmetry group D4h =Z2 × D4, where Z2 is generated
by the reflection about the horizontal midplane, Sz, and D4 is the dihedral group,
which is the symmetry group of a square. Since the two reflections Sy and Sd+

do not commute they are sufficient to generate D4. Note that the same symbol is
used to denote equivalent symmetries in �, �2 and �3. In �3, Sd+

· Sy = R while

Sy · Sd+
= R−1, where R is a rotation of angle π/2 around the z-axis. The symmetry

with respect to the origin and a rotation of angle π around the y-axis are respectively
denoted as −I= R2 · Sz and −Sy = −I · Sy . Thus, the group D4h contains sixteen
elements: the four rotations Rk, k = 0, 1, 2, 3; the five reflections Sd+

, Sd− , Sx , Sy and
Sz; and the products of these nine elements with the central symmetry −I (note that
R4 = I and −I · R2 = Sz).

The expression SB = (SV , S(θez) · ez) is a steady solution of (2.1a–d ) if B = (V , θ)
is also a steady solution and S ∈ D4h is a symmetry of the problem. This solution
satisfies either SB �= B , in which case a different steady solution is generated, or
SB = B , in which case S is a symmetry of the solution B . Consequently, up to fifteen
additional solutions can be generated from a particular solution of (2.1a–d ) by using
the symmetry properties of the problem. The set of all solution SB for S ∈ D4h is
called the orbit of the solution B under D4h. On the other hand, the symmetries of
any particular solution B form a subgroup of D4h called the isotropy subgroup of
the solution which is denoted ΣB . The number of distinct solutions in the orbit
of a solution B is 16/|ΣB |, where |ΣB | indicates the order of ΣB . Solutions on
the same orbit have conjugate isotropy subgroups, i.e. ΣSB = SΣBS−1. Only one
particular solution of those in the same orbit has been considered in the current
study. The remaining solutions and their symmetries can be determined by applying
the symmetries of the problem and the conjugacy relationship.

In the current study the ensemble of all solutions in the same orbit is referred to
as a flow pattern. Once a flow pattern sets in the name or identifier is kept along the
continuation branch with respect to Ra or Pr . A flow pattern is the set of all spatial
configurations obtained by continuation with respect to Ra and Pr and should not
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be understood as a particular spatial configuration for a unique value of these two
parameters.

2.3. Numerical method

The continuation procedure reported by Puigjaner et al. (2004) was applied to
determine the bifurcations and stability of the steady solutions (∂V/∂t = 0, ∂θ/∂t = 0)
of equations (2.1 a–d ). This procedure, which is briefly described in this section, was
based on a Galerkin spectral method with a complete, divergence-free set of basis
functions satisfying all boundary conditions. A formulation of the velocity field in
terms of three scalar potential functions (see Kessler 1987; Puigjaner et al. 2004) was
used to obtain an appropriate set of divergence-free basis functions to expand the
velocity vector field V .

The velocity and temperature fields were approximated by the truncated expansion

(
V
θ

)
=

Nx∑
i=1

Ny∑
j=1

Nz∑
k=1

4∑
s=1

a
(s)
ijk G(s)

ijk , (2.3)

where a
(s)
ijk are the unknown time-dependent coefficients, and G(s)

ijk are defined as

G(1)
ijk =

⎛
⎜⎝

0
−gi(x)fj (y)f ′

k(z)
gi(x)f ′

j (y)fk(z)
0

⎞
⎟⎠ , G(2)

ijk =

⎛
⎜⎝

−fi(x)gj (y)f ′
k(z)

0
f ′

i (x)gj (y)fk(z)
0

⎞
⎟⎠ , (2.4a, b)

G(3)
ijk =

⎛
⎜⎝

−fi(x)f ′
j (y)h′

k(z)
f ′

i (x)fj (y)h′
k(z)

0
0

⎞
⎟⎠ , G(4)

ijk =

⎛
⎜⎝

0
0
0

gi(x)gj (y)gk(z)

⎞
⎟⎠ . (2.4c, d )

The functions with superscript s = 1, 2, 3 refer to velocity components, while s =4
concerns the temperature. In (2.4 a–d ) the functions f are the so-called beam functions
documented by Harris & Reid (1958), and the functions g and h are the trigonometric
functions

gk(x) : cos((2k − 1)πx) or sin(2kπx) ,

hk(x) : cos(2(k − 1)πx) or sin((2k − 1)πx) .

}
(2.5)

The values of Nx, Ny, Nz used in the current calculations are, typically, of the form
2m (it is useful to consider the parity of the functions) with m =7. This gives a total
set of 4 × 143 = 11 076 basis functions.

The thermal boundary conditions assumed in the current study are different from
those used in Puigjaner et al. (2004) and the basis functions involved in the expansion
of the temperature field have been modified to fulfil the thermal boundary conditions
defined in (2.1 d ). The temperature field was approximated by the expansion

θ =
∑
i,j,k

a
(4)
ijkgi(x)gj (y)gk(z) . (2.6)

The Galerkin method transforms the partial differential equations (2.1a–d ) into a
system of ordinary differential equations whose unknowns are the time-dependent
coefficients used to expand the velocity and temperature fields. For steady solutions
the problem reduces to the nonlinear vector equation,

f (c, Ra, P r) = 0, (2.7a)
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Ra/103 Nu �(%) Ra/103 Nu �(%) Flow pattern

44 2.047 0.4 150 2.423 1.4 B1

91 3.999 2.8 150 5.079 3.3 B3

45 2.103 0.3 150 4.582 2.0 B11

25 1.617 0.2 87 3.221 2.3 B312

Table 1. Nusselt numbers calculated by the Galerkin continuation method at Pr = 0.71 and
the relative difference, �, with respect to the Nusselt number obtained by a finite-difference
solver for stable flow patterns.

Ra/103 Nu �(%) Ra/103 Nu �(%) Flow pattern

57 2.963 1.2 150 4.689 2.9 B1

80 3.120 1.1 150 4.241 2.3 B2

79 3.402 2.1 150 4.484 2.9 B3

95 3.750 1.7 150 4.546 2.5 B5

67.72 2.822 0.6 112 3.461 1.5 B24

86 3.245 1.2 B25

113 3.727 2.0 150 4.234 2.3 B26

80 3.425 1.8 94 3.732 3.1 B34

90 3.301 1.3 150 4.212 2.2 B251

Table 2. As in table 1 but for Pr = 130.

with

fj =
∑

i

(Lji(Ra)ci) − Ra1/2
∑
i,n

(Qjin(Pr)cicn), j = 1, · · · , N. (2.7b)

The components ci of the vector c in (2.7b) are the unknowns, and the matrices with
components Lji and Qjin contain the coefficients of the linear and nonlinear terms,
respectively (see Puigjaner et al. 2004).

Bifurcations and stability of steady flow patterns have been mostly determined
as a function of Ra for a fixed value of the Prandtl number. Provided that at
least one solution of (2.7a) had been determined, an arclength continuation method
was applied to calculate further solutions on the branch, until either Ra =1.5 × 105

was reached or the branch connected with another solution branch. The eigenvalue
problem associated with the asymptotic stability of steady solutions along the different
solution branches in the bifurcation diagram was solved. The twenty most unstable
eigenvalues were calculated by means of the ARPACK implementation (Lehoucq &
Sorensen 1996) of the Arnoldi method (Morgan 1996). Further details about the
numerical procedure are provided in Puigjaner et al. (2004) and Puigjaner (2005).

A bifurcation study in the two-dimensional (Ra , Pr−1) parameter plane was also
performed for the flow pattern initially characterized by four connected half-rolls. To
this end the arclength continuation method described in Puigjaner (2005) and used
in Puigjaner et al. (2004, 2006) was modified to allow the continuation parameter
to be either Ra or Pr−1 while keeping the other parameter fixed. Then, starting
from a known flow pattern, solutions over the surface defined by f (c, Ra, P r) = 0
were tracked using the continuation method with either Ra or Pr−1 fixed. The
solution surface was determined by interpolation of the computed solutions over a
triangular grid. The inverse of the Prandtl number, Pr−1, turned out to be a more
suitable parameter than Pr , both in the continuation procedure and in the graphical
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Catton Mizushima & Leong et al. Present Flow pattern
(1970) Matsuda (1997) (1998) study

6 974 6 798
6 969 ± 144
7 058 ± 119

6 799 B1 (x or y-roll)

– 8 437 – 8 353 B4 (single toroid)
– 11 609 – 11 612 B3 (four connected half-rolls)

Table 3. Comparison of primary bifurcation Rayleigh numbers reported in the literature
(Catton 1970; Mizushima & Matsuda 1997; Leong et al. 1998) with the present predictions.
The values reported by Leong et al. (1998) are experimental and include the 95% confidence
limits of uncertainty.

Pr Flow transition Nt = 5 Nt = 6 Nt = 7 Nt = 8 �7−8(%)

0.71 B1 → B11 44 564.03 44 668.88 44 699.57 44 701.89 0.005
0.71 B3 → B33 94 712.79 90 970.35 90 209.66 90 183.32 0.03
130 B3 → B33 20 650.48 20 641.74 20 637.05 20 634.32 0.01
130 B5 → B54 93 540.48 94 023.88 94 416.93 94 523.05 0.1

Table 4. Convergence of calculated Rayleigh numbers at which bifurcations from different
convective flow patterns occur as a function of the truncation parameters Nt = Nx = Ny = Nz.
The rightmost column includes the relative difference between Nt = 7 and Nt = 8.

representation of the solution surface. Note that the convective term is small compared
to the diffusive term in (2.1 a–d ) for Pr−1 → 0. Hence the steady counterpart of these
equations is almost linear when Pr−1 → 0.

2.4. Accuracy assessment

Results obtained with the Galerkin method have been compared with numerical
solutions obtained by using the same fourth-order finite-difference solver as in
Puigjaner et al. (2006). The finite-difference calculations were initialized from the
velocity and temperature fields given by the Galerkin-based continuation method
at some discrete values of the Rayleigh number. The relative differences in Nusselt
number between the Galerkin and the finite-difference solutions are listed in tables 1
and 2 for those solutions that are stable over certain Ra ranges within the domain
studied at Pr = 0.71 and 130, respectively. The maximum difference in Nusselt number
between the Galerkin and the finite-difference solutions is 3.3 % at Ra = 1.5 × 105

and Pr = 0.71.
Table 3 shows that the first bifurcation for the transition from the motionless

conductive state to the onset of convection is predicted at Rac = 6 799. The stable
flow pattern that develops takes the form of an x or y single roll, denoted B1. This
bifurcation value, which is independent of Pr , is in good agreement with numerical
(Catton 1970; Mizushima & Matsuda 1997) and experimental (Leong et al. 1998)
values previously reported in the literature. Table 3 also shows that the present
predictions for the Ra values at which second and third bifurcations from the
conductive state occur, differ by 1% and 0.03%, respectively, from those reported by
Mizushima & Matsuda (1997). These transitions, which are also independent of Pr ,
respectively yield the single toroid B4 and the four connected half-rolls B3.

Convergence of secondary bifurcation Rayleigh numbers with respect to the
truncation parameters Nx , Ny and Nz in (2.3) is shown in table 4 for two
flow transitions at each Prandtl number. This table shows that an increase from
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Nt =Nx = Ny = Nz = 7 to Nt = 8 causes at most a 0.1 % change in the bifurcation
values considered.

3. Results and discussion
Bifurcation diagrams at both Pr = 0.71 and 130 are presented first and the spatial

configurations of stable flow patterns and their evolution as Ra is increased are
discussed. The effect of sidewall conductance on heat transport characteristics, which
might be the reason for the disagreement among different experimental results, is
then analysed by comparing current results with those previously obtained when
adiabatic lateral walls were assumed. This is followed by a comparison of current
results with the experimental studies of Leong et al. (1999) at Pr = 0.71 and Pallarès
et al. (2001) at Pr = 130. Finally, the dependence of the flow pattern of four connected
half-rolls on both the Rayleigh and the Prandtl numbers is comprehensively analysed
by performing a bifurcation study in the two-dimensional (Ra , Pr−1) parameter plane.

3.1. Bifurcation diagrams and flow patterns at Pr= 0.71 and 130

Bifurcation diagrams display a scalar measure of the changes in the solutions of a set
of equations as a function of one or more parameters. They are very useful to depict
the domains of existence, stability character and branching of the multiple solutions
that may coexist when parameters are changed. In particular, the coexistence of
several stable solutions for some ranges of parameters may yield hysteresis in time-
dependent calculations (or in physical experiments) when the parameters are increased
or decreased stepwise. In the current section bifurcation diagrams depict the branches
of steady flow patterns in the (Ra , Nuh)-space for two fixed values of the Prandtl
number (Pr = 0.71 and 130). The Nusselt numbers Nuh and Nuc are respectively the
dimensionless convective heat transport coefficients at the hot bottom and cold top
plates, which were calculated as

Nuh = 1 −
∫ 0.5

−0.5

∫ 0.5

−0.5

∂θ

∂z
(x, y, −0.5) dx dy , (3.1a)

Nuc = 1 −
∫ 0.5

−0.5

∫ 0.5

−0.5

∂θ

∂z
(x, y, 0.5) dx dy. (3.1b)

The heat transferred through the hot bottom plate, Nuh, and through the cold top
plate, Nuc, may not be necessarily the same when perfectly conducting lateral walls are
assumed, in contrast to the case of adiabatic lateral walls (Puigjaner et al. 2004, 2006).
Any difference in these two Nu values balances the heat transferred through the lateral
walls. However, both Nusselt numbers are equal when the flow pattern is invariant
under symmetries that cause the net overall heat transfer rate of the sidewalls to be
zero. The effect of sidewall conductance on heat transport characteristics is discussed
in § 3.2.

Bifurcations from the conductive state, are referred to as primary bifurcations and
the term secondary bifurcations refers to bifurcations from convective flow solutions.
The solution branches depicted in the bifurcation diagrams discussed in this section
have been initiated from solutions that set in at primary bifurcations. The values of
Ra at which primary bifurcations are predicted, together with the corresponding flow
patterns that develop, are listed in table 5 for values of Ra up to 3 × 104. Primary
bifurcations with two different flow patterns correspond to double eigenvalues of
the linearized problem. Since the symmetry properties of flow patterns are useful to
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Flow Generators of the Order of the
Ra pattern isotropy subgroup isotropy subgroup Brief description

6 798
B1

B2

Sy , −I
Sd− , −I

4
4

y-roll
diagonal roll

8 353 B4 Sy , Sd+ 8 single toroid
11 612 B3 −Sy , Sd+ 8 four connected half-rolls
14 770 B5 Sy , −Sd+ 8 four connected half-rolls

diagonally aligned

23 498
B6

B7

Sy , −I
Sd− , −I

4
4

six connected half-rolls
three diagonal rolls

27 746 B8 Sy , Sz, Sd+ 16 double toroid

Table 5. Primary bifurcation Rayleigh numbers and main features of the corresponding flow
patterns that set in for Ra < 3 × 104.

understand their spatial configuration, generators of the isotropy subgroups are also
included in table 5. The brief descriptions of the flow patterns provided in table 5
are valid for both Pr = 0.71 and 130 and refer to their three-dimensional spatial
configuration at values of Ra close to the primary bifurcation value at which they set
in.

The eigenfunctions of the linear problem at the first five primary bifurcation
points listed in table 5 are similar to those reported by Bergeon, Henry & Knobloch
(2001) for the three-dimensional Marangoni–Bénard convection problem in a cubical
cavity. However, whereas the symmetry group associated with the current problem
is D4h = Z2 × D4, the problem studied by Bergeon et al. (2001) has the dihedral
group D4 in �2 as a symmetry group. Consequently, the current eigenfunctions and
the corresponding nonlinear flow patterns B1, B2, B4, B3 and B5 involve additional
symmetries.

The present study deals with stable flow patterns because the unstable ones
are experimentally unattainable. However, initially unstable flow patterns were
also considered because they can become stable as a consequence of subsequent
bifurcations. Only those convective flow patterns having at most three (two) unstable
eigenvalues near the primary (secondary) bifurcation point where they set in were
tracked using the continuation method because the number of steady bifurcations was
too large to continue all the solution branches emerging from identified bifurcations.
In addition, when a solution branch ended at a bifurcation point of a different
solution branch, the latter branch was also continued independently of the number
of unstable eigenvalues of the affected flow pattern.

Summaries of all identified flow patterns at both Pr =0.71 and 130 are presented in
figures 1 and 2, respectively. In these figures, those flow patterns that are stable over
certain ranges of Ra are printed in boldface. In addition, solutions that represent the
same flow pattern, i.e. branches that in the bifurcation diagram connect two different
bifurcation points, are joined by dashed arrows. The motionless conductive state is
denoted C, convective flow patterns that set in at primary bifurcations are labelled
Bi and flow patterns that develop at bifurcation values of Bi are denoted Bij .

3.1.1. Cavity filled with air (Pr = 0.71)

The bifurcation diagram at Pr =0.71 is depicted in figure 3. For the sake of clarity
continued solutions that set in at secondary bifurcations and are unstable over the
whole domain studied are not included in the bifurcation diagram unless they are
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Figure 1. Sketch of the bifurcation diagram at Pr =0.71. Solutions that are connected by a
dashed arrow represent the same flow pattern. Solutions that set in at the same bifurcation
point are joined with a solid arc. Flow patterns printed in boldface are stable over certain
ranges of Rayleigh numbers in the region Ra � 1.5 × 105. Note that the sketch only includes
flow patterns that have been continued according to the criterion defined in § 3.1.
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Figure 2. As in figure 1 but for Pr = 130.

needed to understand the origin of a stable solution. Figures 1 and 3 show that there
are four steady flow patterns, denoted B1, B3, B11 and B312, which are stable over
certain ranges of Rayleigh number for Ra � 1.5 × 105. The ranges of Ra where these
solutions exist and the ranges of Ra where they are stable are summarized in table 6.
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Flow
pattern

Range of
existence

Range of
stability

Generators of the
isotropy subgroup

Order of the
isotropy subgroup

Topology shown
in figures

B1 6 798– 6 798–44 700 Sy , −I 4 5
B11 44 700– 44 700–88 205 Sy 2 6
B3 11 612– 90 210– −Sy , Sd+ 8 7 and 8
B312 22 575–87 481 22 575–69 452 Sd+ , Sd− 4 9

Table 6. Summary of the ranges of existence and stability, and symmetry properties of solutions
that are stable over certain ranges of the Rayleigh number in the region Ra < 1.5 × 105 at
Pr = 0.71. Sy , Sd+

, Sd− , −Sy and −I are matrix representations of elements of the groups of
symmetries.

Generators of the isotropy subgroup associated with each solution are also included
in this table.

Table 6 shows that no stable steady solutions exist within the region 88 205 �
Ra � 90 210 at Pr =0.71. Direct numerical simulations performed with an explicit
time-marching finite-difference solver (see Puigjaner et al. 2004) reveal that the time
evolution of the flow patterns is dependent on initial conditions over this region.
For example, for intermediate Rayleigh numbers in the range 88 205 � Ra � 90 210,
the flow evolves towards a time-periodic solution when the B11 flow pattern is
used as initial condition, while it presents a chaotic behaviour when it is initiated
with a motionless field and a linear temperature distribution in z. The existence
of a time-periodic solution is consistent with the destabilization of the B11 flow
pattern through the supercritical Hopf bifurcation shown in figure 3(a). On the
other hand, an examination of the chaotic time evolution shows that the flow
approaches, at different times, two different unstable steady solutions and up to
five different periodic solutions, all of them unstable. This chaotic behaviour suggests
that connections between unstable and stable invariant manifolds of different unstable
solutions (heteroclinic connections) occur. Moreover, these heteroclinic connections
may, in turn, yield homoclinic connections, i.e. connections between the stable and the
unstable manifold of the same solution. Future research will be directed towards the
calculation of both unstable periodic solutions by using, for example, the Newton–
Krylov approach (Sánchez et al. 2004), and invariant manifolds that yield heteroclinic
and homoclinic connections (Simó 1990).

As discussed in § 2.4, the onset of convection is predicted at the critical value
Rac =6 799. Previous numerical studies (Catton 1970; Mizushima & Matsuda 1997)
did not take into account that the critical value corresponds to a double eigenvalue
of the linear problem whose associated linear independent eigenvectors take the form
of one x-roll and one y-roll, respectively. Consequently, they predicted that the flow
pattern developed at the onset of convection was of the x- or y-roll type. However,
the equivariant singular theory (see Golubitsky, Stewart & Schaeffer 1988; Crawford
& Knobloch 1991) predicts that in the generic case two types of solutions (modulo
symmetry related solutions) must emerge simultaneously at this double bifurcation
point. In the current study these two types of solutions were identified and denoted
B1 and B2. B1 and B2 correspond respectively to the Sy and Sd− symmetric solutions
predicted by the theory. Figure 3(a) shows that both the B1 and the B2 solution
branches are supercritical. This figure also shows that they are respectively stable and
unstable when they set in, in agreement with the theory that predicts that only one
of the two solutions can be stable when both are supercritical.
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Figure 3. (a, b) For caption see facing page.

The method proposed by Jeong & Hussain (1995) to identify vortical structures has
been used to characterize the spatial configuration of flow patterns. These authors
identify a vortex core as the connected region of negative λ2, being λ2 the second
largest eigenvalue of S2 + Ω2, the sum of the squared symmetric and antisymmetric
parts of the velocity gradient tensor. Passive tracer trajectories have been added in
some cases to clarify the flow structure. It is worth mentioning that particles generally
follow chaotic paths despite the steady nature of the solutions. However, a quasi-
periodic behaviour is observed, with paths located on the surface of a torus, for values
of Ra slightly above a primary bifurcation point.

The surfaces λ2 = 0 depicted in figure 4 for the B1 and B2 flow patterns at Ra = 7000
show that both present a single-roll spatial configuration when they set in. The single
roll is aligned along the y-axis in B1 or in the positive diagonal direction in B2.
Figure 3(a) shows that the initially stable B1 solution becomes unstable due to
a symmetry-breaking bifurcation that occurs at Ra = 44 700 whereas the B2 flow
pattern is unstable over the whole range of Ra investigated. Figure 5 shows that the
B1 solution still keeps the characteristic y-roll configuration at Ra = 4.4 × 104 but
it has developed vortical structures parallel to two diagonally opposite edges of the
cavity.



Bifurcation analysis of steady Rayleigh–Bénard convection 405

(c)

B3
B3

B31

B312
B312

B32

B312

B31

 1

 2

 3

 20  40  60  80

Nu

10–3Ra

Figure 3. (a–b) Bifurcation diagram at Pr = 0.71. For clarity the bifurcation diagram is
presented in two plots and additional close-ups of smaller domains are included. Stable flow
patterns are depicted with solid lines; and unstable flow patterns by dashed lines when they
have exactly one unstable eigenmode and by dotted lines when they have two or more unstable
eigenmodes. Supercritical steady bifurcations, subcritical steady bifurcations, Hopf bifurcations
and turning points are represented by filled circles, stars, hollow circles and hollow squares,
respectively. (a) Flow patterns B1, B2 and B11. (b) Flow patterns B3, B4, B5, B8, B31, B32, B311

and B312. (c) Enlargement of the bifurcation diagram depicted in (b) for the flow patterns B3,
B31, B32, B311 and B312 at values of Ra within the range 5 000 � Ra � 90 000.
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Figure 4. Surface of λ2 = 0 for (a) the stable B1 flow pattern and (b) the unstable B2 flow
pattern at Ra = 7 × 103. Here and in all subsequent plots of λ2 = 0 surfaces, the grey levels
are scaled with the value of the vertical velocity component and the filled circle denotes the
vertex with coordinates (−0.5, −0.5, −0.5) while the coordinates of the lower frontal vertex
are (0.5, −0.5, −0.5).

An initially stable flow pattern, denoted B11 (see figure 3a), develops at the
bifurcation point where the B1 solution becomes unstable. This symmetry-breaking
bifurcation is analogous to those previously reported by Puigjaner et al. (2004, 2006).
The spatial configuration of the B11 flow pattern is initially sets in similar to that of
the stable solution B1 plotted in figure 5, except for the loss of the central symmetry,
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Figure 5. Stable B1 flow pattern at Ra = 4.4 × 104 and Pr =0.71. (a) Surface of λ2 = 0.
(b) Passive tracer trajectory. (c, d) Vertical velocity contours at horizontal planes (c) z = 0 and
(d) z = 0.25. Here and in all subsequent velocity contours plots, positive and negative values
of the velocity are plotted with solid and dashed lines, respectively. (e, f ) Projected velocity
vectors at vertical planes (e) y = 0 and (f) x = 0.125.
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Figure 6. Stable B11 flow pattern at Ra = 8.8 × 104 and Pr = 0.71. (a–c) Vertical velocity
contours at horizontal planes (a) z = −0.25, (b) z =0 and (c) z = 0.25. (d) Projected velocity
vectors at the vertical plane x =0.

denoted as −I in table 6. However, figure 6 shows that the spatial configuration
of the B11 flow pattern becomes more complex as Ra is increased. Whereas a y-
roll configuration with a superposition of two relatively strong secondary vortical
structures is adopted by B11 at the lower half of the cavity (figure 6a), the flow at
the upper half presents a toroidal configuration (figure 6c) with air rising through the
central part and sinking near the lateral walls, with a stronger downwelling motion
near the lateral wall x = 0.5. The B11 flow pattern becomes unstable at Ra = 88 205
as a consequence of a supercritical Hopf bifurcation, as shown in figure 3(a).

Figure 3(b) shows that the single toroidal flow pattern denoted B4 that develops at
the second primary bifurcation turns out to be unstable over the whole region
investigated. An initially unstable flow pattern denoted B3 sets in at the third
primary bifurcation Ra =11 612 (see table 3 and figure 3 b, c). Note that for adiabatic
sidewalls the B3 and B4 flow patterns develop at the second and third primary
bifurcation, respectively. Figure 7 shows that the B3 flow pattern can be understood
as four connected half-rolls at values of Ra slightly above the bifurcation point.
As the Rayleigh number is increased secondary vortical structures parallel to the
horizontal edges of the cavity are superimposed onto the characteristic four-half-roll
configuration of the B3 solution, as shown in figure 8. The B3 flow pattern becomes
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Figure 7. Unstable B3 flow pattern at Ra = 1.2 × 104 and Pr = 0.71. (a) Surface of λ2 = 0.
(b) Vertical velocity contours at the horizontal midplane z = 0.
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Figure 8. Stable B3 flow pattern at Ra = 1.5 × 105 and Pr =0.71. (a) Surface of λ2 = 0.
(b) Passive tracer trajectories. (c–e) Vertical velocity contours at horizontal planes (c) z = −0.25,
(d) z = 0 and (e) z = 0.25.

stable at Ra =90 210 and remains so thereafter, as shown in figure 3(b). Two of
the three positive eigenvalues associated with the B3 solution become negative at a
double bifurcation point which takes place at Ra = 14 350. At this bifurcation point
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Figure 9. B312 flow pattern at Ra = 5 × 104 and Pr =0.71. (a, b) Vertical velocity contours of
the stable B312 flow pattern (upper branch in the bifurcation diagram) at horizontal planes (a)
z = − 0.25 and (b) z =0.25. (c, d) Vertical velocity contours of the unstable B312 flow pattern
(lower branch in the bifurcation diagram) at horizontal planes (c) z = − 0.25 and (d) z = 0.25.

two additional unstable flow patterns denoted B31 and B32 arise. The B31 and B32 flow
patterns are invariant under Sd+

and −Sy , respectively, in agreement with the theory
(see Golubitsky et al. 1988). Figure 3(c) shows that the −Sy invariant flow pattern B31

connects the initially unstable B3 solution with the solution denoted as B312. One of
the two realizations of the B312 solution (the upper branch in figure 3c) is stable over
the range 22 575 � Ra � 69 452. Note that the destabilization of B312 occurs through
a supercritical Hopf bifurcation. Figure 9(a, b) shows that the stable realization of
B312 at Ra=50 000 presents a spatial configuration similar to that of B3 plotted in
figure 8. However, table 6 shows that the isotropy subgroups of both flow patterns
are different. The B312 flow pattern maintains both diagonal reflection symmetries Sd+

and Sd− but it has lost the −Sy symmetry present in the isotropy subgroup of B3.
The loss of this symmetry is difficult to see at the upper stable branch of B312 shown
in figure 9(a, b) but becomes evident at the lower unstable branch of B312 plotted in
figure 9(c, d ).

3.1.2. Cavity filled with silicone oil (Pr = 130)

The bifurcation diagram sketched in figure 2 shows that all solutions that set in
at primary bifurcations, except for the single-roll B1, are connected to each other
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Figure 10. (a, b) For caption see facing page.

through their secondary bifurcations. For the sake of clarity the bifurcation diagram
depicted in figure 10 includes only solution branches that are stable over certain
ranges in the domain studied, and solutions that despite being unstable are necessary
to understand the origin of stable ones. Figures 2 and 10 show that there are nine
steady flow patterns, denoted B1, B2, B3, B5, B24, B25, B26, B34 and B251, which are
stable over certain ranges of Ra in the region Ra � 1.5 × 105. The ranges of Ra
where these solutions exist, the ranges of Ra where they are stable and their isotropy
subgroups are summarized in table 7.

Since primary bifurcations do not depend on the Prandtl number, solutions B1,
B2, and B3 correspond to the same flow structures previously discussed for Pr = 0.71
when they set in at primary bifurcations. However, their subsequent bifurcations and
the evolution of their spatial configuration is rather different at Pr =130. Figure 10(a)
shows that the B1 flow pattern is stable when it sets in at the onset of convection but it
becomes unstable as a consequence of a supercritical Hopf bifurcation at Ra = 57 304.
Moreover, the B1 solution does not present the symmetry-breaking bifurcation where
the steady B11 flow pattern arises as observed for Pr = 0.71. Figure 11 shows that
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Figure 10. (a–c) Bifurcation diagram at Pr = 130. For clarity the bifurcation diagram is
presented in three plots and additional zooms of smaller domains are included. See figure 3
for the notation. (a) Flow patterns B1 and B2. (b) Flow patterns B3, B5 and B34. (c) Flow
patterns B2, B24, B25, B26 and B251 at values of Ra within the range 40 000 � Ra � 150 000.

Flow
pattern

Range of
existence

Range of
stability

Generators of the
isotropy subgroup

Order of the
isotropy subgroup

Topology shown
in figures

B1 6 798– 6 798–57 304 Sy , −I 4 11
B2 6 798– 67 730–85 694 Sd− , −I 4 12
B24 42 659–112 381 66 969–67 730 Sd− 2 13(a)
B25 85 694–87 598 85 694–87 598 −I 2

B251 48 116–
61 160–65 297

87 598–
Sy , −I 4 14

B26 112 622– 146 738– −Sd− 2 13(b)
B3 11 612– 20 637–79 362 −Sy , Sd+ 8 16
B34 79 362–94 417 79 362–94 417 −Sy · Sd+ 4 18
B5 14 770– 94 417– Sy , −Sd+ 8 15 and 17

Table 7. As in table 6 but for Pr = 130.

the B1 flow pattern changes from a single roll to a double toroidal configuration at
moderate values of Ra (Ra = 5 × 104). Flow rises along the central part of the cavity
and sinks near the lateral walls and vice versa at the upper and lower halves of the
cavity, respectively, as shown in figure 11(b, c). Since B1 is invariant under the central
symmetry −I (see table 7) the upper toroid in figure 11(a) can be obtained from the
lower one by applying this symmetry.

In contrast to the results obtained for Pr = 0.71, figure 10(a, c) shows that the
initially unstable B2 diagonal roll solution becomes stable at a subcritical bifurcation
that occurs at Ra = 67 730. The initially stable flow pattern developed at this
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Figure 11. Stable B1 flow pattern at Ra = 5 × 104 and Pr = 130. (a) Surface of λ2 = 0. (b, c)
Vertical velocity contours at horizontal planes (b) z =0, (c) z = 0.25 (d , e). Projected velocity
vectors at vertical planes (d) y = 0.25 and (e) x = 0.25.
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Figure 12. Stable B2 flow pattern at Ra = 8 × 104 and Pr =130. (a) Surface of λ2 = 0. (b)
Passive tracer trajectories. (c–e) Vertical velocity contours at horizontal planes (c) z = − 0.25,
(d) z = 0 and (e) z =0.25.

subcritical bifurcation point, denoted B24, becomes unstable as a consequence of
a subcritical Hopf bifurcation at Ra = 66 969. Once the B2 solution becomes stable
it remains so until a new symmetry-breaking bifurcation takes place at Ra = 85 694.
Figure 10(c) shows that the stable flow pattern B25 that develops at this bifurcation
connects the B2 solution with the solution denoted B251, causing a transfer of stability
from the Sd− invariant B2 solution to the Sy invariant B251 solution. Figure 10(c) shows
that this transfer of stability occurs without hysteresis. Since the B251 branch presents
a turning point at Ra =48 116 two realizations of this flow pattern are possible for
Ra > 48 116. One of these realizations is stable over both regions 61 160 � Ra � 65 297
and Ra � 87 598. The B26 solution arises at the bifurcation point of B2 that occurs
at Ra = 122 622 and it becomes stable at Ra = 146 738, as shown in figure 10(c).
Figure 12 shows that the B2 solution at Ra =8 × 104 is no longer a diagonal roll,
but, similarly to the B1 solution discussed above (figure 11), it adopts a double
toroidal configuration. Figures 13(a, b) and 14 show that the B24, B26 and B251 flow
patterns have similar spatial configurations to that discussed for the B2 solution at
Ra = 8 × 104 (figure 12), despite of their different symmetry properties.

Figure 10(b) shows that the initially unstable flow pattern B3 that sets in at the third
primary bifurcation point (Ra =11 612) becomes stable at Ra =20 637 and remains
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Figure 13. Surfaces of λ2 = 0 at Pr =130. (a) Stable B24 flow pattern at Ra = 67 720.
(b) Stable B26 flow pattern at Ra = 1.5 × 105.

so until a secondary bifurcation takes place at Ra = 79 362. The bifurcations and
stability regions of the B3 flow pattern are discussed in more detail in § 3.4.

The flow pattern B5, which sets in as an initially unstable flow pattern at the fourth
primary bifurcation point (Ra = 14 770), becomes stable at Ra = 94 417 and remains
so thereafter (at least up to Ra = 1.5 × 105), as shown in figure 10(b). Figure 15 shows
that the B5 flow pattern, at values of Ra slightly above the bifurcation point at which
it originates, presents the configuration of four connected half-roll characteristic of
the B3 solution (see figure 7) but rotated an angle of π/4. Both the B3 and the
B5 flow patterns evolve to a double toroidal configuration when Ra is increased, as
shown respectively in figures 16 and 17 for Ra = 1.5 × 105. Figure 10(b) shows that
the stability of the B3 and the B5 solutions is transferred without hysteresis through
the stable flow pattern denoted as B34. The order of the isotropy subgroup of the
B34 flow pattern is four, as shown in table 7, consistently with the symmetry-breaking
bifurcations of the B3 and the B5 solutions. The isotropy subgroups of both flow
patterns B3 and B5 are of order eight. This loss of symmetry is also evident in figure 18,
where the configuration of the stable B34 flow pattern is depicted for Ra = 8.7 × 104.

3.2. Effect of sidewall conductance on heat transport characteristics

The dimensionless rate of heat transfer from the hot bottom plate into the fluid, Nuh,
is equal to the rate of heat transferred between the fluid and the cold top plate, Nuc,
when the lateral walls are adiabatic. However, heat can also be transferred from the
sidewalls into the fluid and vice versa when the lateral walls are conductive. In this
case the two Nusselt numbers Nuh and Nuc may be different and differ from the total
input heat transfer, which includes the heat transferred through the lateral walls. The
total dimensionless input heat transfer, denoted Nu t , is defined as

Nut = 1 +

〈(
− ∂θ

∂n
· n

)+〉
∂D

, (3.2)

where 〈(f )+〉∂D indicates an average of the positive values of f over the boundary
surface of the domain D and n is the unit vector normal to the boundary surface.

To illustrate the differences in Nu figure 19 shows the variation of Nuh, Nuc and
Nu t with Ra for both the B1 and the B11 flow patterns at Pr =0.71. The central
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Figure 14. Stable B251 flow pattern at Ra = 1.5 × 105 and Pr = 130. (a) Surface of λ2 = 0.
(b–d) Vertical velocity contours at horizontal planes (b) z = − 0.25, (c) z = 0 and (d) z = 0.25.
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Figure 15. Unstable B5 flow pattern at Ra = 1.5 × 104 and Pr = 130. (a) Surface of λ2 = 0.
(b) Vertical velocity contours at the horizontal midplane z = 0.
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Figure 16. Unstable B3 flow pattern at Ra =1.5 × 105 and Pr =130. (a) Surface of λ2 = 0.
(b–d) Vertical velocity contours at horizontal planes (b) z = −0.25, (c) z = 0 and (d) z =0.25.

symmetry of the B1 flow pattern (see table 6) causes the net overall heat transfer rate
of the sidewalls to be zero. As a consequence the values of Nuh and Nuc are equal for
the B1 flow pattern in figure 19. In contrast, the initially stable flow pattern B11 yields
different Nu at the two horizontal bottom and top plates due to the loss of the central
symmetry property; this difference balances the heat exchanged through the lateral
walls. Figure 19 also shows the enhanced heat transfer ability of the B11 flow pattern
compared to the B1 solution. The Nu t for B11 is always above the corresponding Nuh

and Nuc values, indicating the contribution of sidewalls to the total heat transfer rate.
The sidewall effect can be quantified by comparing the present Nusselt numbers,

Nuh, Nuc and Nu t , with the Nusselt number at the bottom hot plate obtained when
the adiabatic boundary condition is applied, which is denoted Nuad . Values of Nuh,
Nuc, Nu t and Nuad are reported in table 8 for the flow patterns B1, B11, B2 and B3 at
several values of Ra for both Pr = 0.71 and 130. The factor C = (Nuh − Nuad)/Nuad ,
used by Verzicco (2002) to determine the effect of sidewall conductance on the heat
transport in a cylindrical cavity, is also included in table 8. It is observed in this table
that C is dependent on the particular flow pattern and has larger absolute values for
those flow patterns whose spatial configurations differ more from the corresponding
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Figure 17. Stable B5 flow pattern at Ra = 1.5 × 105 and Pr = 130. (a) Surface of λ2 = 0.
(b) Passive tracer trajectories. (c–e) Vertical velocity contours at horizontal planes (c) z = −0.25,
(d) z = 0 and (e) z =0.25.

ones in the cavity with adiabatic lateral walls. Table 8 shows that the highest value
of |C| =0.4 is obtained in the case of the B1 flow pattern at Ra = 1.5 × 105 and
Pr = 0.71. Note that the highest relative difference between Nu t and Nuh, denoted F

in table 8, is also reached in this case, indicating that differences in the flow pattern
configurations between adiabatic and perfectly conducting lateral walls condition the
amount of heat transferred to the system through the lateral walls. Values of the
quantity Nu t/Nuad , listed in the rightmost column of table 8, indicate that,
overall, flow patterns transfer heat more efficiently in the perfectly conducting case
than they do in the adiabatic case.

3.3. Comparison with experiments

The present results can be compared with the experimental studies reported by Leong
et al. (1999) and Pallarès et al. (2001). Both experiments were performed in a cubical
cavity with lateral walls approximating perfectly conducting boundary conditions. The
physical devices used in these experiments are sketched in figure 20. Air (Pr =0.71)
was used as fluid in the experiments of Leong et al. (1999), whereas the experimental
cavity used by Pallarès et al. (2001) was filled with silicone oil (Pr = 130). Pallarès et al.
(2001) used the dimensionless number γ = kf L/(kwdw) to quantify the finite thermal
conductivity of the sidewalls. In this expression kf and kw are respectively the thermal
conductivities of the fluid and the walls, dw is the thickness of the lateral walls and L
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Figure 18. Stable B34 flow pattern at Ra = 8.7 × 104 and Pr = 130. (a) Surface of λ2 = 0.
(b–d) Vertical velocity contours at horizontal planes (b) z = − 0.25, (c) z = 0 and (d) z = 0.25.

Flow pattern Ra/103 Pr Nuh Nu t Nuad F C Nu t/ Nuad

B1 50 0.71 2.13 3.27 3.07 0.35 −0.31 1.06
B1 150 0.71 2.42 4.19 4.05 0.42 −0.40 1.03
B1 50 130 2.74 3.62 3.10 0.24 −0.12 1.17
B1 150 130 4.69 6.26 4.13 0.25 0.14 1.52

B11 88 0.71
3.89
3.40

5.31 4.04
0.27
0.36

−0.04
−0.16

1.31

B11 150 0.71
4.58
4.37

6.18 5.10
0.26
0.29

−0.10
−0.14

1.21

B2 150 130 4.24 5.94 4.41 0.29 −0.04 1.35
B3 150 0.71 5.08 7.43 5.41 0.32 −0.06 1.37
B3 150 130 4.48 5.93 5.07 0.24 −0.12 1.17

Table 8. Comparison of the present heat transfer coefficients, Nuh and Nu t , with those reported
for adiabatic lateral walls, Nuad . The two possible Nuh values, depending on the y-vorticity
sign, are included for the B11 flow pattern. F = (Nut −Nuh)/Nut and C = (Nuh −Nuad )/Nuad .
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Figure 19. Variation of the Nusselt numbers Nuh, Nuc and Nu t with Rayleigh number for
the B1 and B11 flow patterns at Pr = 0.71. Steady and Hopf bifurcations are represented with
filled and hollow circles, respectively.
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Figure 20. Sketch of a section of the physical device at x = 0. The hatched domains correspond
to highly conductive walls. The bottom and top plates are kept at constant hot and cold
temperatures Th and Tc , respectively. The grey strips indicate that the lateral walls are insulated
to prevent the lateral loss of heat from the device. Thermal conductivities of the fluid and the
walls are kf and kw , respectively.

is the height of the cavity. The dimensionless number γ is equivalent to the inverse
of the quantity denoted as W by Verzicco (2002). The value γ = 0 corresponds to
perfectly conducting lateral walls. The values of γ corresponding to the experimental
set-ups of Leong et al. (1999) and Pallarès et al. (2001) were respectively γ = 0.0026
(L/dw = 39.9, kf /kw = 6.5 × 10−5) and γ = 0.45 (L/dw = 0.625, kf /kw = 0.72).

3.3.1. Cavity filled with air (Pr = 0.71)

Table 3 shows that the critical Rayleigh number predicted in the current study
is in good agreement with the experimental value reported by Leong et al. (1999).
Differences between current predictions and experimental Nusselt numbers are below
4 % in all cases, as shown in table 9. This table also includes the name of the
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Nu

Ra/103 Present study Leong et al. (1999) Flow pattern

10 1.202 1.246 ± 0.013 B1

40 2.008 2.018 ± 0.017 B1

100 3.648 3.509 ± 0.035 B11

100 4.062 3.916 ± 0.042 B11

Table 9. Comparison of the cold-plate Nusselt numbers with experimental results reported by
Leong et al. (1999). The rightmost column includes the corresponding flow pattern predicted
in the current study.

corresponding flow pattern predicted by the Galerkin method. As discussed in § 3.2
the B11 flow pattern yields different values of Nuh and Nuc. Thus, it may be possible
that the two different values of Nu reported by Leong et al. (1999) at Ra = 105 (see
table 9) correspond to two different particular elements in the orbit of the B11 solution
that are related by the central symmetry −I. This explanation is consistent with the
fact that Leong et al. (1999) reported that the Nuc value of one solution coincided
with the Nuh value of the other and vice versa. These authors reported a steady flow
pattern that resembles the current B11 at Ra = 105. This value of the Rayleigh number
is only slightly higher than the Ra = 88 205 value at which, according to the present
results, the B11 flow pattern becomes unstable as a consequence of a supercritical
Hopf bifurcation.

3.3.2. Cavity filled with silicone oil (Pr = 130)

The only flow patterns experimentally observed by Pallarès et al. (2001) for
conducting lateral walls in the range 5 × 103 � Ra � 8 × 104 were those denoted S1,
S2 and S5 by these authors, which respectively correspond to the current B1, B2

and B3 flow patterns. The unstable toroidal flow pattern B4, which was denoted S4
by Pallarès et al. (2001), was experimentally identified in that work as a transitional
state during the start-up of the experimental apparatus. This transitional B4 flow
pattern eventually evolved to the B2 solution. Figure 21(a) shows the sequence of flow
transitions from the B2 solution to other steady flow patterns reported by Pallarès
et al. (2001) when Ra was increased or decreased. As Ra was increased the first
transition from the diagonal roll B2 to the single roll B1 was experimentally observed
in the range 104 <Ra < 2 × 104. The second transition was observed in the range
5 × 104 <Ra < 5.5 × 104 and B1 evolved again towards the B2 flow pattern. Finally,
in the range 6 × 104 <Ra < 6.5 × 104 a third transition from the B2 solution to the B3

flow pattern was experimentally identified. Once the B3 flow pattern had developed,
it remained stable on decreasing the Rayleigh number until the initial diagonal roll
B2 was recovered in the range 104 <Ra < 2 × 104. Furthermore, Pallarès et al. (2001)
reported that a flow pattern, denoted S6 by those authors, developed at Ra =1.2 × 105

and remained stable when the Rayleigh number was decreased to Ra =8 × 104.
The present study predicts that both the initially stable B1 and the initially unstable

B2 flow patterns develop at the smallest primary bifurcation (Rac =6 798). The current
continuation method also predicts that the B2 flow pattern remains unstable until a
bifurcation takes place at Ra = 67 730, as observed in figure 10. Figure 21(a) shows
that the value of Ra at which the transition from the B1 solution to the B2 solution
was experimentally observed agrees in figure 21(b) with the current predicted value
of Ra where the B1 solution becomes unstable. However, the experimentally observed
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Figure 21. (a) Sequence of flow transitions from the conductive state observed experimentally
by Pallarès et al. (2001) as Ra was increased and decreased stepwise (the experimental
range of Ra where each transition was observed is indicated by grey strips). (b) Stable flow
patterns identified by the current continuation method. Flow patterns printed above and below
horizontal dashed lines are stable. Bifurcations are marked with vertical solid lines. Bifurcation
points where a flow pattern becomes stable or unstable are respectively labelled with s or u.
The label u-s indicates that the initially stable flow pattern B34 sets in at the bifurcation point
where the B3 solution becomes unstable.

consecutive transitions from B1 to B2 and from B2 to B3 flow patterns in figure 21(a)
are not found in the current study (figure 21b) where the B1 solution becomes
unstable as a consequence of a Hopf bifurcation. Nevertheless, it is possible that the
flow pattern found experimentally within the range 5.5 × 104 � Ra � 6.5 × 104 was the
B251 solution, which is predicted to be stable within the ranges 61 160 � Ra � 65 297
and Ra � 87 598, as shown in table 7. The spatial configuration of the B251 flow
pattern at Ra =6.3 × 104 is rather similar to that plotted in figure 12 for the B2

solution at Ra = 8 × 104. The current study predicts that the B3 solution becomes
stable at Ra = 20 637, which is consistent with the experimentally observed stability
of this solution on decreasing the Rayleigh number to Ra =2 × 104. In addition,
the spatial structure of the flow pattern B5, shown in figure 15, and its region of
stability (Ra � 94 417), suggest that the solution denoted S6 by Pallarès et al. (2001)
might correspond to the current B5 flow pattern. This hypothesis is reinforced by the
connection between the B3 and the B5 solutions in the bifurcation diagram depicted
in figure 10(b).

The realizability of a stable flow pattern can be characterized by the measure
of its basin of attraction in the space of initial perturbed states. Only those flow
patterns whose basin of attraction overlaps with the initial conditions used in the
experiment are experimentally attainable. Thus, it is unlikely that a flow pattern
with a narrow stability domain, like B24, would be found experimentally. On the
other hand, imperfections in the experimental set-up may produce important changes
in the bifurcation diagram, specially when these imperfections break some of the
symmetries of the problem. When the diagonal symmetry is broken due to geometric
imperfections, the splitting of double zero eigenvalues into primary and secondary
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1/Pr Nu

Ra

Figure 22. Variation of the Nusselt number with Rayleigh number and the inverse of the
Prandtl number for the B3 solution in the ranges 1.2 × 104 � Ra � 1.2 × 105 and 0.71 � Pr � 130.
The bifurcation curves where the stability character of the B3 solution changes are depicted
as black solid lines over the solution surface.

bifurcations is expected. In particular, the critical bifurcation where the B1 (x- or
y-roll) and B2 (diagonal roll) solutions emerge will split into two successive primary
bifurcations, one producing an x-roll solution and the other a y-roll solution, when the
cavity is slightly rectangular. Moreover, for a small enough departure from a square
cross-section a secondary bifurcation on one of these roll branches will occur near
the primary bifurcation. At this secondary bifurcation a flow pattern that resembles
the diagonal roll B2, but no longer with the Sd− symmetry property, will set in (see
Crawford & Knobloch 1988; Bergeon et al. 2001).

3.4. Effect of the Prandtl number

Comparison of the bifurcation diagrams for Pr = 0.71 and 130 respectively presented
in figures 3 and 10 reveals that the evolution of flow patterns with Ra , their spatial
configurations and stability character, and their subsequent bifurcations depend
strongly on the Prandtl number. These differences are also evident in terms of
regions of stability when tables 6 and 7 are compared, particularly for flow patterns
B2, B3 and B5. Both B2 and B5 are unstable over the whole region Ra � 1.5 × 105

at Pr = 0.71, but they are stable over some ranges within the domain studied at
Pr = 130.

The B3 flow pattern, which is initially formed by four connected half-rolls, shows
completely different regions of stability at Pr = 0.71 and 130, that deserve a more
exhaustive bifurcation study in the two-dimensional (Ra , Pr) parameter plane. The
three-dimensional surface plotted in figure 22 shows the variation of the Nusselt
number for the B3 solution as a function of the two control parameters Ra and Pr−1.
The presence of folds in this figure indicates that several realizations of the B3 flow
pattern are possible for some values of Ra and Pr−1. The parameter chart plotted in
figure 23 shows the regions where different number of flow realizations, varying from
zero to five, are possible. The dashed curve from a to b in this figure corresponds to a
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Figure 23. Parameter chart in the two-dimensional (Ra ,Pr−1) plane for the B3 solution. The
curves are bifurcation curves that separate regions in the plane where a different number
of realizations of the B3 flow pattern are possible. The numbers indicate the number of
possible realizations of the B3 flow pattern within each region. The dashed curve a–b identifies
symmetry-breaking bifurcation points. The five solid curves c–d, e–f, f –g, g–h and h–i are fold
curves. The intersection points of bifurcation curves are labelled p, q and r. The directions of
the axis in this figure are reversed for consistency with figure 22.

curve of symmetry-breaking bifurcation points of the unstable flow pattern B8. Hence,
the B3 solution manifold connects to the B8 solution surface through this bifurcation
curve. The other five curves in figure 23 are fold curves, i.e. curves formed by the
loci of turning points. The cusp points labelled f, g and h in figure 23 correspond to
codimension-two hysteresis points where two fold lines coalesce.

The bifurcation curves where the stability character of the B3 solution changes
are depicted as black solid lines over the solution surface in figure 22. This figure
shows two different regions of stability, which correspond to the ranges Pr−1 � 1.16
(Pr � 0.86) and Pr−1 � 1.24 (Pr � 0.81), respectively. In the latter region the B3 flow
pattern becomes stable at considerably large values of Ra (Ra � 90 200), but once it
has become stable it remains so thereafter within the domain studied (Ra � 1.5 × 105).
On the contrary, within the region Pr−1 � 1.16 (Pr � 0.86) the B3 flow pattern presents
regions of stability at rather low values of Ra . The values of Ra at which the B3 flow
pattern becomes stable increase smoothly from Ra = 20 600 to Ra = 35 000 in this
region. The nature of the bifurcation where B3 becomes unstable depends on Pr in the
region Pr−1 � 1.16 (Pr � 0.86). Specifically, B3 becomes unstable as a consequence
of a symmetry-breaking bifurcation that occurs at values of Ra within the range
79 360 � Ra � 88 050 whenever Pr−1 is lower than 0.73 (Pr > 1.37). In the narrow
region 0.73 � Pr−1 � 0.75 (1.33 � Pr � 1.37) B3 becomes unstable at the turning point
over the fold line (f –e) in figure 23. Hence, the Rayleigh number at which B3

becomes unstable increases rapidly from Ra =88 050 to Ra = 114 700 within this
region. Finally, in the region 0.75 � Pr−1 � 1.16 (0.86 � Pr � 1.33) the value of Ra
at which B3 becomes unstable decreases smoothly from Ra = 114 700 to Ra = 35 000
and the instability is again due to a symmetry-breaking bifurcation.
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Figure 24. (a) Stability α–δ–f region for the B3 flow pattern, which is not properly visualized
in figure 22. The dashed line and the points labelled f and q correspond to the same line and
points as in the parameter chart plotted in figure 23. Two realizations of the B3 flow pattern
are stable within the region α–γ –β–f. (b) Continuation curves over the B3 solution surface at
Ra = 8.5 × 104, 8.6 × 104 and 9 × 104. The dotted curves correspond to the fold curves f –e and
f –g in the parameter chart plotted in figure 23.

In addition, there is a third small region of stability which cannot be properly
visualized in figure 22. This region is the quasi–triangular region α–δ–f in figure 24(a).
Note that the point f corresponds to the cusp point depicted in figure 23. Two
realizations of the B3 flow pattern are simultaneously stable for values of Ra and
Pr−1 within the region α–γ –β–f in figure 24(a). This issue is better illustrated
in figure 24(b) where three tracked continuation solution curves are plotted. Note
that the B3 flow pattern is unstable within the whole Ra range investigated for
1.16 � Pr−1 � 1.24 (0.81 � Pr � 0.86).

The development of the folds in the solution manifold near the cusp points g
and h is shown in figure 25. The three curves plotted in this figure were obtained
by a sequence of continuation runs using Pr−1 as the continuation parameter. It is
clear that a saddle-like behaviour appears for Ra between 103 × 103 and 104 × 103.
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Figure 25. Development of the folds in the solution manifold near the cusp points g and h
in figure 23. The curves plotted in this figure were obtained by a sequence of continuation
runs using Pr−1 as a continuation parameter at Ra = 103 × 103, 104 × 103 and 105 × 103. The
dashed curve corresponds to the symmetry-breaking bifurcation curve in the parameter chart
plotted in figure 23.

Figure 25 shows that five possible realizations of the B3 flow pattern are possible for
some values of Pr−1 at Ra = 103 × 103 and Ra = 104 × 103, in agreement with the
parameter chart plotted in figure 23.

4. Conclusions
The bifurcation diagrams of steady flow patterns that develop inside a cubical cavity

heated from below and filled either with air (Pr =0.71) or silicone oil (Pr = 130) were
determined by means of an arclength continuation procedure based on a Galerkin
spectral method. The study was performed in the range Ra � 1.5 × 105 and the four
lateral walls were assumed to be perfectly conducting. Twenty-one and thirty-five
solution branches were continued using Ra as parameter at Pr = 0.71 and Pr = 130,
respectively. The stability analyses predicted that four (B1, B11, B3, B312) and nine
steady flow patterns (B1, B2, B24, B25, B251, B26, B3, B34, B5) were respectively stable
at Pr =0.71 and 130 over certain ranges of Ra in the region investigated. The spatial
configurations of the flow patterns are very similar to those developed for adiabatic
lateral walls at values of Ra close to the bifurcation point where they set in, but
they become increasingly different as the Rayleigh number is increased. The greater
complexity of the present problem, compared to the case with adiabatic lateral walls,
is a direct consequence of the thermal activity of the lateral walls.

Comparison of the bifurcation diagrams at Pr = 0.71 and 130 shows that the
evolution of flow patterns and their stability are strongly dependent on the Prandtl
number. Flow patterns tend to adopt a double toroidal spatial configuration, even
at moderate values of Ra when the cavity is filled with silicone oil (Pr = 130). This
double toroidal configuration consists of two torus-like vortices that respectively span
most of the top and bottom halves of the cavity. The thermal activity of the sidewalls
is the reason why almost every flow pattern, especially at Pr = 130, tends to adopt
the double toroidal topology as the Rayleigh number increases.
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The variation of the heat transfer rate at the bottom plate as a function of
the two control parameters Ra and Pr−1 for the flow pattern B3 with an initial
four-connected-half-roll configuration yielded a rather complex three-dimensional
manifold that presented several folds and cusp points. The presence of folds in
the solution manifold reveals that up to five realizations of the B3 flow pattern
are possible over some ranges of the parameters Ra and Pr−1 and that even two
stable realizations coexist over a narrow region of these parameters. This explains the
important differences in the spatial configuration and in the stability character of the
B3 flow pattern at different Prandtl numbers.

The present calculations are in fairly good agreement with the experimental results
reported by Leong et al. (1999) at Pr =0.71 and Pallarès et al. (2001) at Pr = 130. The
current analysis provides a possible interpretation for the two different values of the
heat transfer at the bottom plate, Nuh, reported by Leong et al. (1999) at Ra =105.
In addition, it explains most of the experimental flow transitions between different
steady flow patterns observed by Pallarès et al. (2001) over the region Ra � 8 × 104 at
Pr = 130.
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Verzicco, R. 2002 Sidewall finite–conductivity effects in confined turbulent thermal convection.
J. Fluid Mech. 473, 201–203.

Yang, K. T. 1988 Transitions and bifurcations in laminar buoyant flows in confined enclosures.
Trans. ASME: J. Heat Transfer 110, 1191–1204.




